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Abstract—The measured equation of invariance (MEI) is a
new concept in computational electromagnetics. It has been
demonstrated that the MEI technique can be used to terminate
the meshes very close to the object boundary and still strictly
preserves the sparsity of the finite-difference (FD) equations.
Therefore, the final system matrix encountered by the MEI is
a sparse matrix with a size similar to that of integral equation
methods. However complicated the Green’s function, disagree-
able Sommerfeld integrals, and very difficult umbilical meshes
for multiconductors make the traditional MEI very difficult
(if not impossible) to be applied to analyze multilayer and
multiconductor interconnects. In this paper, the authors propose
the geometry independent MEI (GIMEI) which substantially
improves the original MEI method. The authors use GIMEI
for capacitance extraction of general two-dimensional (2-D) and
three-dimensional (3-D) very large scale integration (VLSI) inter-
connect. Numerical results are in good agreement with published
data and those obtained by using FASTCAP from Massachusetts
Institute of Technology (MIT) and some other commercial tools,
while GIMEI’s are generally an order of magnitude faster than
FASTCAP with much less memory usage.

Index Terms—Capacitance matrix, fast 3-D extraction, geome-
try independent, interconnects, measured equation of invariance
(MEI), measuring loop.

I. INTRODUCTION

T HE DESIGN and development of next-generation elec-
tronic products is driven by an increasing demand for

greater functionality, higher performance, and a shorter design-
to-manufacturing cycle time in smaller, yet faster packaging.
Currently, the feature size is as small as 0.35m, and it has
been predicted in the1994 National Technology Roadmap for
Semiconductors (NTRS)that the feature size will decrease to
0.25 m in 1998, and 0.18 m in 2001. Shrinking silicon
geometries affects the electrical properties of the wires which
produces a corresponding effect on the IC signals. As a result,
factors which have an insignificant effect at 1m or larger be-
come significant impediments to performance at 0.35m and
smaller. One of the dominant factors affecting IC performance
as feature size shrinks into deep submicron (less than 0.5m)
is interconnect. Because transistor sizing is shrinking faster
than the interconnect between transistors, wiring interconnects
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dominate the total gate-to-gate delay. For instance, at 2m,
80% delay is due to transistor or gate delay, and only 20%
delay is attributed to the wires. In deep submicron design
such as 0.25 m and smaller, however, interconnect delay may
account for some 80%–90% of the total delay for long nets. As
interconnect becomes a principal determinant of performance,
it is increasingly critical to both understand and account for
its effects as part of the design process. This is done by
modeling the interconnects and extracting parasitic parameters,
which are effects not intentionally designed into the chip but
are rather consequences of the layout. In the modeling, one
has to consider the propagation delay and transmission line
impedance, together with other effects such as signal degrada-
tion caused by transmission line dispersion, signal reflection at
discontinuities, crosstalk between adjacent and cross lines, and
simultaneous switching noise due to the inductance in power
distribution system. And these effects must be quantified in
order not to render a fabricated digital circuit inoperable or to
distort an analog signal and make it fail to meet specifications.
The current practice of modeling the interconnect with discrete
components will not be accurate enough. In addition, nontrivial
parasitic effects of nearby electrically different chip mask
elements will also require greater detailed information and
accuracy in modeling, including 3-D effects. Therefore, it
is necessary to develop computationally efficient methods to
extract the parasitics of the interconnects.

For an inhomogeneous structure like very large scale inte-
gration (VLSI) interconnects, the modes are hybrid and a full-
wave approach should be adopted. However, the quasi-static
(quasi-TEM) approximations are sufficiently accurate when
the transverse components predominates over the longitudinal
ones; in other words, the transverse dimensions of the structure
are much smaller than the wavelength. Since the frequency
range of interest for high-speed VLSI is often below 10 GHz,
the quasi-TEM assumption is adopted. In fact, up to now the
static capacitance matrix and inductance matrix of the
multilayer and multiconductor interconnect is commonly used
in practice for high-speed VLSI, printed circuit board (PCB),
and multichip modules (MCM) design.

The various procedures to reach the solution can be gen-
erally classified into the following categories. One category
is to solve differential Maxwell equations called domain or
finite methods, such as the finite-element method (FEM) [1]
and finite-difference method (FDM) [2], [3]. They basically
divide the space surrounding the object into meshes, then write
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local equations at each mesh point, which leads to a sparse
matrix system. But the standard FDM or FEM involves a large
number of unknowns because of the fact that they get the
solution of the potential distribution over the entire geometry
domain and the boundary conditions are usually valid only
far away from the object for open problem. Another category
is using the integral equation approach such as method of
moments (MoM) [4], the boundary-element method (BEM)
[5], and the BEM with multipole acceleration [6]. They make
meshes on the surface of the object. For multilayer, multi-
conductor interconnects, this means meshes are made either
on the surface of each conductor with the Green’s function
for a layered medium which is both mathematically and
computationally complex, or on the surfaces of each conductor
and all dielectric interfaces but with the much simplified
Green’s function. Compared to FDM, this greatly reduces the
number of unknowns; however, each small piece is either a
source or field point, and are affected by all others, which leads
to a full matrix. Therefore, all these methods will either solve
a sparse but very large matrix or solve a small, but full, matrix.
There is also another kind of semianalytical approach, such as
the method of lines (MoL) [7], [8], spectral-domain approach
(SDA) [9], and dimension-reduction technique (DRT) [10].
They basically take some special procedures and reduce the
original problem by one dimension. The drawback of these
methods is that the geometry they can deal with has some
limitations. For example, MoL and SDA have difficulties
to deal with nonzero thickness conductors, and it is hard
to apply DRT to nonplanarized structures. Recently, several
methods have been proposed to approach a sparse final matrix
system whose number of unknowns is small. Among them,
the measured equation of invariance (MEI), is one of the most
natural and successful.

The MEI is a new concept in computational electromagnet-
ics [11], [12]. MEI is used to derive the local finite-difference
(FD) equation at a mesh boundary where the conventional
FD approach fails. It is demonstrated that the MEI technique
can be used to terminate the meshes very close to the object
boundary and still strictly preserves the sparsity of the FD
equations. Therefore, the final system matrix encountered
by the MEI is a sparse matrix with size similar to that of
integral equation methods, which results in dramatic savings
in computing time and memory usage. The MEI has been
applied to analyze microwave integrated circuits [13]–[15],
to analyze scattering of penetrable medium problems [12],
[16], to analyze scattering of anisotropic medium [17], and
to analyze scattering in an open region combined with FEM’s
[18]–[21]. It has also been extended to time domain [22].

For multilayer and multiconductor structures, however, the
deduction of the Green’s function is very difficult. Also,
the calculation of the MEI coefficients will encounter many
Sommerfeld-type integrals. As a result, the calculation of
MEI coefficients dominates the total computing time [15].
In addition, it becomes very difficult or inefficient to do
an umbilical mesh as is done in a traditional MEI for a
multiconductor system [13]–[15]. Therefore, the complicated
Green’s function, disagreeable Sommerfeld integrals, and a
difficult mesh generation scheme make the traditional MEI

Fig. 1. A general 3-D interconnect configuration (the two figures are not
related).

very difficult, if not impossible, to be applied in analyzing
multilayer and multiconductor interconnects.

Recently, a MEI variety called geometry independent MEI
(GIMEI) was proposed [23]–[25] which was verified as being
very computationally efficient. GIMEI substantially improved
the MEI in four key aspects by: 1) cancelling the postulate
of geometry specific in the conventional MEI; 2) avoiding the
deduction of the Green’s function in a multilayer structure;
3) avoiding the calculation of disagreeable Sommerfeld-type
integrals; and 4) avoiding the use of umbilical mesh. Using
this method, the calculation of MEI coefficients only costs
a very small part of the total computing time. Although
by avoiding the Sommerfeld-type integral as the Green’s
function, this approach has a larger number of unknowns than
traditional MEI procedures [13]–[15] and the overall efficiency
is much better. In this paper, the authors extended the GIMEI
to compute the capacitance matrix of general interconnects.
The results are in good agreement with published data and
those obtained by using FASTCAP from MIT [6]. Also, the
GIMEI can generally achieve an order of magnitude faster
than FASTCAP with significantly less memory usage.

This paper is organized as follows. Section II defines the
problem. Section III briefly reviews the MEI method. Section
IV describes the basic principle of the GIMEI. Section V
gives several numerical and experimental results to verify the
accuracy and efficiency of the GIMEI. Section VI presents the
authors’ conclusions.

II. PROBLEM FORMULATION

A general interconnect configuration is shown in Fig. 1. For
an N-conductor system, an capacitance matrix is
defined by

(1)
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Fig. 2. Discretization mesh of a 3-D structure.

which can be rewritten as

(2)

where is the short circuit capacitance. In this paper, when
talking about capacitance, the authors refer to the short circuit
capacitance. Note that for a two-dimensional (2-D) case, the
capacitance value is with respect to per-unit length. Now, the
parasitic capacitance problem to be considered is reduced to
the determination of the charge on each conductor for the
known potentials.

The authors first discretize the geometry in interest into
elementary boxes using a orthogonal Cartesian grid shown in
Fig. 2. A 2-D case can be similarly derived [23]. The electrical
potential can be assumed to be constant inside the elementary
boxes and confined at the middle of the box. The mesh points
on the metallization can be treated to be at a constant potential
under the quasi-TEM assumption. The boundary of the mesh is
treated later when the authors present the concept of the MEI.

The electrical potential function in the bounded region,
except those mesh points on conductors of the quasi-static
problem, satisfies the following Laplace equation:

(3)

Using difference to approximate derivative, one can write
the electric potential at each internal mesh point as the linear
combination of potentials of neighboring mesh points. By
using the concept of a loop integral [12], one has derived a
generalized local FD equation which can account for different
step size and material along all directions with the error of

, where [26].

Fig. 3. A slice cut from Fig. 2 illustrating a measuring box.

III. M EASURED EQUATION OF INVARIANCE

The derived FD equation is only applicable at interior nodes
of the mesh. In [11], Mei postulated that the FD/element
equations at the mesh boundary points can also be represented
by a local linear equation of the type

(4)

where is the number of nodes that surrounding the node in
interest . The node configuration is shown in Fig. 3 which
is a slice cut from Fig. 2 with the surfaces and . And
the coefficients in (4) are: 1) location dependent; 2) geometric
specific; and 3) invariant to the excitation. Equation (4) is
called the MEI, and , the coefficients of the
MEI.

In a conventional MEI, the MEI coefficients are obtained
by first setting a set of distribution functions, calledmetrons
on conductors, then forming a linear algebraic equations with
each element being the response of one certain metron at each
boundary MEI node, and finally solving this linear equation.
Then, the potential values at all nodes can be obtained by
solving equations consisting of FD equations at interior nodes
and the MEI at truncated mesh boundary nodes. The coefficient
matrix of the system of linear algebraic equations is a sparse
matrix since each row contains either seven nonzero elements
from FD equations or (or less) nonzero elements from the
MEI. Here, is at most six without considering diagonal
nodes. It results in great savings in memory needs compared
with the BEM or the MoM, etc. Furthermore, the computing
time for a sparse matrix is greatly less than a dense matrix
with similar dimension. The order of a coefficient matrix in the
MEI approach is much less than that in conventional FDM’s
with absorbing boundary conditions, because the MEI can
terminate the mesh very close to the region of interest here.
These properties make the method of the MEI a powerful tool
for computational electromagnetics.
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Although some papers [27], [28] proposed some doubts
on the third postulation of the MEI coefficients—invariant
to excitations—these authors still admit in their papers that
the MEI is an efficient technique for the truncation of mesh
boundaries. Actually, their arguments were either not correct
[29], [30] or did not conflict with the fundamentals of the
MEI because it has already been proven that MEI coefficients
are actually not strictly invariant to excitations, but instead
are invariant to excitations with the error bounded by ,
where [31]. As stated above, the local
FD equation also has the error of , therefore,
the total truncation/model error of the final matrix system has
the order of , which is not degenerated by the
introduction of MEI equations on boundaries. The wide appli-
cation of the MEI concept in computational electromagnetics
has also contributed to the verification of the MEI’s efficiency.

However, the closed-form Green’s functions for multilayer
structures of VLSI interconnects are generally derived in a
spectral domain and then transformed to the space domain
by inverse Fourier transformation that are infinite integrals. In
addition to the tedious deduction of the Green’s function in
a multilayer structure, the calculation of the MEI coefficients
is very time-consuming because many Sommerfeld-type inte-
grals will be encountered. The calculation of MEI coefficients
dominates the total computation time. As reported in [15],
for a one-layer microstrip stub, obtaining the MEI coefficients
required 90 central processing unit (CPU) min for a single
frequency, and solving the sparse system required 24 min
on a Dec Station 5000 series 200. On the other hand, in
the traditional MEI, a umbilical mesh is adopted for coupled
microstrip lines analysis [13]; however, this mesh genera-
tion scheme becomes extremely difficult to implement for
multiconductor systems. Therefore, the complicated Green’s
function, disagreeable Sommerfeld-type integrals, and a very
difficult mesh generation scheme make the MEI very difficult,
if not impossible, to be applied to multilayer and multicon-
ductor interconnects.

IV. GEOMETRY INDEPENDENT

MEASURED EQUATION OF INVARIANCE

In order to overcome these drawbacks and apply this ef-
ficient truncation boundary concept in multiconductor, multi-
layer interconnects analysis, the authors introduced the mea-
suring box concept, which is first proposed in [12] and further
extended and explored in [23], [24]. A measuring box is just
a closed surface that encloses all objects inside as shown in
Figs. 2 and 3, to isolate the MEI nodes (boundary and the
next layer) and possibly some buffer layers from the region
containing conductors. In [23], it has been demonstrated that
the MEI are also independent of the source distribution on
the measuring loop provided the third postulate [31] MEI
are independent of the source distribution on the conductors’
surface. The MEI coefficients are then determined from the
metrons on the measuring loop instead of the metrons on
the conductors, which means that the MEI are independent
of the geometries of the conductors or structure configuration.
In order to avoid the Green’s function in a multilayer structure,

the dielectric layers are truncated at the measuring loop
with physical polish which ensures such truncation will not
affect the total accuracy; therefore, free space out of the
measuring loop is assumed. Thus, the very simple free-space
Green’s function to measure the MEI coefficients can be used.
Experiments suggest that very few layer meshes between the
measuring loop and the nearest conductors, and very few layer
meshes outside the measuring loop, are sufficient to guarantee
the accuracy of these results in practice.

The potential values , at the corresponding
MEI nodes corresponding to theth metron defined on the
measuring loop can be simply obtained:

(5)
where stands for the measuring loop, denote the
position vectors at theth MEI node and the measuring loop,
respectively, and is the number of metrons. The 3-D quasi-
static Green’s function of free space is simply

(6)

where is the image position vector of with respect to
the ground plane, if any.

Substituting the potential values produced by the th
metron into the MEI (4), yields

(7)

which is a system of linear algebraic equations with respect to
the MEI coefficients , when is normalized
to 1. If the number of equations or the number of metrons is
greater than , one can solve (7) by least square techniques.

Generally, in a 3-D case, since global continuous metrons
are difficult to find, the point metrons are selected and clus-
tering techniques are adopted. Because under quasi-static
assumption, only the amplitude information (no phase infor-
mation compared with full-wave approach) is needed in the
determination of the MEI coefficients, clustering is an efficient
approximation. In this program, the CPU time to obtain the
MEI coefficients are much less than solving the final sparse
matrix, which means the overhead time spent on the MEI
coefficients is only a very small part (less than 5%) of the
total computing time.

Coupling the MEI equations at truncated mesh boundary
nodes to the FD equations at interior nodes results in the
matrix equation

(8)

where is a column matrix consisting of the potential values at
all mesh nodes, and is the known column matrix followed
from the neighboring FD’s around the conductors on which
voltages are impressed.

From the solution of (8), one gets the potential distribution
over the mesh region. Since the FD approximation of the
Laplace equation is less accurate in the vicinity of a con-
ductor’s reentrant corner (i.e., a corner whose outside angle
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is greater than radians) because of a singularity in the
electric field in the corner, one uses Duncan’s correction [32]
to get charge distribution or total charge on each conductor.
Bringing these charges into (2), one can get the final short
circuit capacitance matrix.

An adaptive mesh–remesh scheme has also been developed.
In this scheme, the field is solved in a number of steps, the total
computation time or solution accuracy is checked in each step,
and whenever necessary the solution, including its accuracy
information, is fed back to the mesh generator to further refine
the mesh at the suitable location. This scheme makes the
GIMEI field-solver flexible and time-bounded. Furthermore,
this mesh generator can effectively treat arbitrary geometry
including nonrectangular bends. This mesh emphasizes the
location requiring higher resolution in a much more efficient
way, resulting in much fewer mesh points and, hence, greater
efficiency in the field-solver.

V. EXPERIMENTAL RESULTS

It has been demonstrated by experimental results that the
authors’ approach is faster than the BEM (with multipole
acceleration), MoM, and FD, without loss of accuracy. In
addition, this method outperforms other methods mentioned
above for fairly large structures. Furthermore, this method can
be easily applied to structures with arbitrarily shaped cross-
section conductors including infinitesimally thin conductors on
lossy and inhomogeneous dielectric layers due to the nature of
the FD used inside the measuring loop. To verify the accuracy
and speedup advantage of this method, the following examples
were selected to provide a quantitative measure. All relevant
programs are run on a Sun Sparc 20 workstation.

A. 2-D Examples

Because the capacitance and inductance per-unit length do
not vary when the whole geometry is scaled in a 2-D case,
relative size of each configuration is given without specifying
the units in the following examples.

1) A Thin Microstrip: The first example shown is an in-
finitesimally thin microstrip as in Fig. 4. The characteristic
impedance of this structure can be defined as

where is the speed of light in free space,
is the capacitance of this structure, and is the capacitance
with the dielectric layer replaced by free space.

Fig. 5 shows the comparison of the characteristic impedance
varying with the width–height ratio obtained by
using the GIMEI, Cao’s result [4] which uses the MoM,
Zutter’s results [9] which are based on the space-domain
Green’s function approach (SDGA), and those provided by
[33] and [34]. In the results of this paper, the authors use
ten mesh points per-unit length. The difference of these
results are within 2.5% compared with the results in [34]
which is regarded as a standard reference for this kind of
problem.

2) Two Coupled Microstrips:The second 2-D example is
a pair of coupled microstrips touching a dielectric slab over
a conducting plane as shown in Fig. 6. The conductors are
numbered from left to right as 1 and 2, respectively. Table

Fig. 4. A thin microstrip line.

Fig. 5. Characteristic impedancesZ0 in ohms.

Fig. 6. Structure of coupled microstrips.

I compares these results with those of Cao’s [4] and Weeks’
[35]. For comparison, the results of [35] have been changed to
dimension farads per meter. The differences are within 2.5%.

3) Three Lines with Three Dielectric Layers:A slightly
more complex example is illustrated in Fig. 7. Table II shows
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TABLE I
CAPACITANCE IN PF/M FOR FIG. 6

TABLE II
CAPACITANCE IN PF/M FOR FIG. 7

Fig. 7. Configuration of three line bus in layered dielectric.

Fig. 8. Three parallel wires immersed in a dielectric.

Fig. 9. C22 versus the interwire distances for Fig. 8.

Fig. 10. Example of a configuration of 12 lines.

TABLE III
SELF CAPACITANCE IN PF/M FOR FIG. 10

these results together with the comparison with those of [9].
Here the conductors are numbered from left to right as 1, 2,
and 3, respectively.
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TABLE IV
SELF CAPACITANCES IN AF(10 F ) OF THE CUBE AND THE CPU TIME IN SECONDS

TABLE V
CAPACITANCE IN AF AND CPU TIME IN SECOND OF

1 � 1 � 5�m CUBE USING E.W. BOUNDARY CONDITION

Fig. 11. A right-angle bend over a ground plane.

4) Three Parallel Lines Immersed in Dielectric Compared
with Measured Data:This example, whose configuration is
shown in Fig. 8, shows three parallel wires immersed in a
dielectric which is a commonly found structure in microelec-
tronics. The structure represents three equidistant rectangular
wires running parallel to a ground plane, where each conductor
has the same size , and the space varies from 5 to 60.
This structure has been measured by Lin [36]. Fig. 9 shows
capacitance of the middle conductor varying with the
interwire distance. A difference of less than 3% is observed in
the whole range between the authors’ results and the measured
data [36]. It’s clear from the figure that the authors’ results
are closer to the measured data than those obtained by a
commercial 3-D interconnect modeling tool using the FDM.

5) A Large Multilayer and Multiconductor Example:To
show that the authors’ method is a very fast parameter ex-
tractor, an artificial example is given below. Here, for the
sake of convenience, although the authors’ method can handle
arbitrarily shaped cross-section structures, only regular shaped
cross-section structures are used. The example shows five
dielectric layers and 12 conductors shown in Fig. 10. The
conductors are numbered in sequence from left to right and
from bottom to top. All conductors have the size of 55 and

Fig. 12. Self-capacitance versus buffer number.

Fig. 13. A 1� 1 cross over a ground plane.

the spacing between the two adjacent conductors on the same
layer is also 5. The outer space is all free space with .

Table III shows the comparison of the authors’ results and
those computed by the BEM. A difference of approximately
5% is observed. Because the capacitance matrices are fairly big
(12 12), the authors only give the results of self capacitances
of each conductors. The authors’ method, which takes 5.5-s
CPU time, is eight times faster than the BEM which takes
43.97-s CPU time. The differences are less than 5%.

B. 3-D Examples

The authors have also extended the GIMEI into a 3-D
problem.

1) A Simple 3-D Example: Cube with Different Longitude in
Air, Compared with FASTCAP as well as FD with Zero E-Field
Boundary Condition:To verify the speedup and accuracy
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TABLE VI
CAPACITANCE IN AF FOR 1 � 1 � z CROSSOVERPROBLEM

TABLE VII
COMPARISON OF CPU TIME IN SECONDS AND MEMORY IN MEGABYTES FOR CROSSOVERPROBLEM

TABLE VIII
COMPARISON OF EXTRACTED CAPACITANCE IN fF AND MESH SIZE

property of the GIMEI, a simple example of a 1
cube (unit in m) is computed and compared with FASTCAP
[6], which basically uses the BEM with multipole acceleration.
The cube computed is extended along one direction. Table IV
shows the results (self-capacitance of the cube varying with the
extended edge) and CPU time of the GIMEI compared with
those of FASTCAP. The GIMEI is about ten times faster than
FASTCAP with the difference in the results of less than 1%.

The authors have also compared their results with those
of standard FD under the zero E-field (electric wall [E.W.])
boundary condition using the same mesh discretization. The
structure is chosen to be a 1 m cube. Table V
shows the results by using an E.W. varying with the layer
number outside the measuring loop. To achieve the results
close enough to the accurate ones (149.8 aF from the GIMEI
and 149.6 aF from FASTCAP), the FDM requires as many
as 30 mesh layers outside the measuring box, referred to as
buffer layers, and takes more than 250 s. On the other hand,
the GIMEI only needs three buffer layers and takes 0.34 s.

2) Proper Buffer Number Selection in a Right-Angle Bend
Example: A simple right-angle bend is shown in Fig. 11,
where all dimensions are inm.

While FASTCAP got the self-capacitance of the bend (2.956
fF) in 16.1 s, the GIMEI obtained the result (2.974 fF) in 1.16
s. Again in this case, the GIMEI is more than ten times faster
than FASTCAP. It is worth noting that in [3], the result is
105 F which is unreasonable. Fig. 12 shows the capacitance
obtained by the GIMEI varying with the buffer number outside
the measuring loop. As indicated, one only needs to use four
to five buffer layers to get enough accurate results.

3) A Series of Crossover: Fig. 13 shows a 1 1
cross immersed in five dielectric layers with a ground plane at
the very bottom of the structure. The structure parameters are

as follows. The height of each dielectric layer is 1m. Each
metal line has the width of 1m, and the two lines have the
same length m. And they are overlapped both in the middle
of the other line. The dielectric relative permittivities are all
chosen to be 3.9 for the sake of simplicity. The lower metal
is numbered one while the higher is numbered two.

Table VI shows the results of short circuit capacitances,
, and computed by both the GIMEI and FASTCAP

varying with the line length . They are within the difference
of 3%. Table VII shows the CPU time and memory usage
of the two methods. The number of buffer layers outside the
measuring box for the GIMEI is three. The GIMEI uses an
order of magnitude of less computing time and memory usage
than FASTCAP.

4) 3-D Structures Cut from a Real Design:The authors
have also compared their field-solver results with the BEM
and FDM on two larger 3-D examples using five metal layer
technology. The first example has 11 metal lines, while the
second has 14 metals, with the metals distributing from M1
(metal 1) to M4 (metal 4), and include many crossovers. The
results are shown in Table VIII.

It is clear that the GIMEI uses much less grid size than
the FDM and, thus, much less computing time. Generally
speaking, because meshes close to objects are truncated and
still keep the sparsity of the final system matrix, the GIMEI
can treat larger structures faster than other numerical methods.

VI. CONCLUSIONS

In this paper, by using the measuring loop, the authors
substantially improved the MEI in four key aspects by: 1)
cancelling the postulate of geometry specific in the conven-
tional MEI; 2) avoiding the deduction of the Green’s function
in the multilayer structure; 3) avoiding the calculation of
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disagreeable Sommerfeld-type integrals; and 4) avoiding the
use of an umbilical mesh, but still keeping all the advantages of
the MEI, and successfully introducing the concept of the MEI
as an efficient truncation boundary condition into the analysis
of 3-D interconnects. Using the GIMEI, the calculation of the
MEI coefficients only costs a very small part of the total
computing time. Numerical and experimental results show
that the GIMEI proposed in this paper is generally an order
of magnitude faster than FASTCAP using the BEM with
multipole acceleration and other commercial tools without loss
of accuracy. Furthermore, this technique can easily handle the
interconnect problems with an arbitrarily shaped cross section
and lossy and inhomogeneous dielectric media. The technique
can also be extended to 2-D or 3-D dynamic analysis of
multilayer multiconductor interconnect problems.
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